Tag Archives: chemical

CO2 in Garages and Tunnels.

Modern vehicle engines emit many harmful substances, including carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), hydrocarbons and some 20 other gases. It is known that all engines produce CO, particularly at cold start. To protect ourselves from this toxic gas, vehicles are installed with catalytic converters. This means that a warm running modern engine with converter generates 140 times more CO2 than CO.

catalytic_converterCatalytic converters convert a lot of the CO produced by an engine into CO2.

Facts and Figures

The longest tunnel in Switzerland will be the Gotthard Base Tunnel (under construction) that will be 57km long. The tunnel is a railway tunnel.

The longest car tunnel in the world is located in Norway, the Laerdal tunnel, 24km.

The LEP tunnel in Cern, Switzerland/France is a 26km circular ring.

Why the need to measure CO2?

Old vehicles (pre-catalyst) generate a lot of carbon monoxide pollution, to solve this, modern vehicles were installed with catalytic converters. Catalytic converters are not very efficient during cold start up but once warm they can convert CO to CO2 very effectively. This means modern engines emit much higher quantities of CO2 than CO. It is well-known that CO is extremely toxic but CO2 in high levels can also be hazardous to health. To ensure healthy air quality it is important to provide excellent ventilation in garages and tunnels, however running a ventilation system constantly is inefficient especially when few cars are running at a time.

SAM_3014Levels of CO2 in large indoor car parks can become extremely dangerous if not properly controlled.

In garages and tunnels vehicles can be operating in both warm and cold conditions, therefore it is important to measure both CO and CO2 to ensure a safe environment. Today there are laws around the measuring of CO – the maximum allowed value is 35 ppm. There are however, currently no rules on measuring CO2 but this is equally as important.

How does it work?

A meter can both control and alarm locally, as well as being part of a larger complete system. This application is similar, for example, to the ventilation requirements in a classroom.

The ventilation need depends on the number of cars running in a garage or tunnel instead of the number of students in a classroom. The sensors usually used to measure CO2 and CO in public garages and tunnels are capable of covering an area of around 250 m2.

Reduced Costs

A study was made in a garage containing 77 parking places and covering an area of 1,445 m2. The study showed that using sensors to control the ventilation reduced the fan operating time by 90% compared to constant running. The electricity cost was about €0.09 per kW/h (including energy tax and VAT) and the fan used 1.5 kW/h in operation. This meant that the demand-control solution produced an energy saving, per month, of 970 kW/h, and a resulting reduction in running-costs of ca 85.32 €/month. If all residential garages were equipped this way the sum of energy saved would make for a considerable benefit to society and the environment. A larger garage would have saved even more money thanks to the controlled ventilation system.

c700x420Ventilation plays a vital role in keeping in door parking spaces safe, especially when busy.

Another benefit is fewer people suffering from CO or CO2 poisoning being admitted to hospitals. As well as being good for the health of the general public, This helps reduce the costs of health care to the government.

Phil Robinson                                                                                                           Rotronic UK

Temperature, Humidity and Ceramic drying

Introduction

Ceramic drying is one of the most important processes in ceramic production technology. Quality defects of ceramic products are caused by improper drying. The drying affects the quality of the finished product, the throughput but also the overall energy consumption for ceramic manufacturing enterprises. According to various statistics, generally energy consumption during drying processes represents 15% of total industrial fuel consumption. However within the ceramic industry, the energy consumption used for drying accounts for a much higher percentage of the total fuel consumption. Therefore energy saving within the drying process is extremely important for all enterprises. Drying speed, reducing energy use , ensuring high quality products and reducing  pollution are all  basic requirements for any ceramic manufacturer today.

Measurement and Control in Ceramic Dying

Ceramic production is done through several main processes: casting, drying, glazing, firing…

The casting and drying are important processes for ceramic. A forming workshop is equipped with an intelligent control system. The control system regulates the relative humidity value using information provided via room and process sensors. Sensors have to measure accurately ad repeat ably despite the challenging and often dusty conditions. Humidification and dehumidification processes require substantial energy so tighter control is a huge energy saver for these industries.

A constant temperature is also achieved via the intelligent control system. With a stable temperature and stable relative humidity within the workshop, manufacturers ensure the quality of  the ceramic body drying.

After stripping the body from the cast, the body contains a very high relative humidity level. During the drying process, the body may crack or deform due to the speed in which the product is dried (volume and shrinkage) which ruins the product and decreases the throughput.

Exactly this part of the process has become a major bottleneck within the production process of ceramic products.

In a casting workshop, stable environments can reduce the cracking and deformation effectively. It also improves the throughput rate of semi-finished products and shortens the drying period, also prolonging the life frame of the  plaster cast.

So constant temperature and  relative humidity according to the set values will help all factories to improve the throughput, reach an optimal drying speed and deliver the best quality results available.

How can we help?

Rotronic provides a range of instruments for environmental monitoring and control.

Rotronic HC2-IC industrial temperature and humidity probes, are successfully working in these tough applications, the probes are installed on the roofs of drying chambers and resist chemical pollution. With a flexible  HF5  transmitter, the outputs can be set to the customers requirements.

With both digital and a range of analogue outputs available as well as several probe mounting options, products can be selected for all applications.

Measurement data can be viewed on HF5 with display or remotely via HW4 software. Ease of calibration and sensor replacement ensures down time is kept to an absolute minimum.

Dr Jeremy Wingate
Rotronic UK

 

CO2 and Indoor Air Quality (IAQ)

Indoor Air Quality in General

The quality of the air in a room can greatly affect the health, productivity, and well being of any occupants. Previously the temperature and humidity of indoor air were considered as the most important parameters contributing to air quality, but there are several other factors which must be taken into account.

Indoor Air Quality (IAQ) problems are very often caused by gases or particles released into the air by pollution sources. This can be avoided by carefully selecting the materials which are to be used inside dwellings, offices, classrooms, gymnasiums, hotels, shopping malls, hospitals and in all en-closed spaces which are inhabited. But there is another source of air pollution, which cannot be avoided. this other source is people themselves. Every time a person exhales, CO2 is released. Inadequate ventilation may increase CO2 concentration to an unhealthy or even life-threatening level.

carbon_dioxide_3d_ball

CO2: made up of 2 oxygen atoms, double bonded to a single carbon atom.

The most important control parameters for a good Indoor Air Quality are temperature, relative humidity and CO2 concentration. If these values are used with an intelligent air conditioning system, an energy efficient air supply can be used to produce a high quality atmosphere.

Facts & figures:

CO2 is a naturally occurring molecule consisting of two oxygen atoms and a single carbon atom.

At standard temperature and pressure CO2 is a gas, invisible and without any smell or taste.

CO2 is 50% heavier than air and has no liquid state under atmospheric pressure.

In the earth’s atmosphere CO2 has a concentration of 390 ppm by volume.

The worldwide industry produces approximately 36 billion tons of CO2 per year.

Industrial activities are responsible for an increase of atmospheric CO2 concentration and thus for an increase of global warming (greenhouse effect).

Influence of CO2 on Humans

Only a small amount of the atmosphere is made up of CO2, the prevailing components are nitrogen and oxygen. The natural outdoor atmosphere CO2 level is approx. 390 ppm. Increasing this concentration causes several symptoms of poisoning, ranging from drowsiness at around 1´000ppm to unconsciousness and even death at above 10´000 ppm. Even if a  rise in CO2 concentration has not yet severely influenced the health of people, it may reduce their productivity, efficiency and well-being.

270px-Main_symptoms_of_carbon_dioxide_toxicity.svg

 

Some of the possible health effects

How to Measure CO2

The most common measuring method for CO2 concentration nowadays is based on a spectroscopic principle. Sending infrared light (IR) with a wave length of 4.23 μm through a gas sample. CO2 molecules in the sample absorb the light at this wavelength. an IR sensor is then used to detect any changes in the energy levels of the light after passing through the sample. The more C)2 in the sample, the more of the light that will be absorbed, and the weaker the IR signal will be when it reaches the sensor.

ndir-sensor_1

Example of an IR CO2 sensor

The sensitivity of a CO2 sensor increases with the length of the light path through the sample gas. Thus the sensor used in Rotronic CO2 measuring devices makes use of multiple reflections of the IR beam on the walls of the probe chamber. this means the small CO2 sensor (2.5 cm x 5 cm) has a measuring path length of 12.5 cm and is accordingly sensitive. This type of sensor is called a NDIR (Non Dispersive Infra Red) sensor. This means that a broadband IR light source is used and the measured wavelength is filtered out at the end of the beam in front of the IR detector.

Why the Need to Measure CO2

New energy efficient demands lead to more airtight buildings and ventilation being completely turned off at night. Intelligent HVAC systems must be able to adapt themselves to situations with changing occupants of rooms. One answer is Demand Controlled Ventilation (DCV) with built-in CO2 sensors. By using DCV, huge amounts of energy can be saved without any drawback for the occupants. According to a study of the UN Climate Panel 40-50% of world energy is used in buildings. Only the adoption of the EU Directive on Energy Efficient Buildings would result in saving 30-45 MT of CO2/year. As HVAC (Heating, Ventilation and Air Conditioning) is responsible 40-65% of energy usage in commercial and public buildings, a balance between comfort and energy saving must be found.

HVAC

A large HVAC system

One example demonstrates the evidence of CO2 controlled room ventilation. The exhaled air of a human contains up to 40´000 ppm CO2. In one hour a person breathes out 15 litres of CO2. Thus in a classroom with a volume of 200 m³ occupied by 25 pupils the CO2 concentration increases in one hour by 1´875 ppm!

Especially in wine cellars, breweries, the beverage industry and other industries in which CO2 may be produced or processed the constant measuring of CO2 concentration is absolutely vital to prevent a deadly threat to the employees. This is not only a rational procedure but is also enforced by official regulations in nearly every developed country.

Philip Robinson                                                                                                       Rotronic UK

Humidity Control & Pharmaceutical Tablet Coating

Tablet coating in general

Pharmaceutical tablet coating involves the application of a coating composition to a moving bed of tablets with the use of heated air to facilitate the evaporation of the solvent. Several different types of coating are typically used.

Tablet Coating
Tablet Coating Machine
  • Sugar-coated tablets are coated with a coloured or an uncoloured sugar layer. The coating is water soluble and quickly dissolves after swallowing. The sugar-coating protects the encapsulated drug from the environment and provides a barrier to objectionable tablet taste or odour.
  • Film-coated tablets are compressed tablets coated with a thin layer of a polymer that forms a skin-like film. This is usually coloured and has the advantage over sugar coatings  that it is more durable, less bulky, and works faster at the desired location in the gastrointestinal tract.
  • Enteric-coated tablets have delayed release properties. They are designed to pass unchanged through the stomach to the intestines, where the tablets disintegrate and allow the drug to dissolve and start its effect. Enteric coatings are used when the drug substance itself would be destroyed by gastric acid or is irritating to the gastric mucosa.

Facts & figures:

Aspirin is one of the most used drugs in the world – approximately 35,000 metric tonnes are produced annually, enough to make over 100 billion aspirin tablets.

Americans consume 80% of the world`s supply of painkillers — more than 110 tons of pure, addictive opiates every year.

How can accurate measurements help?

Environmental control is the practice of managing the temperature, humidity, air circulation, ventilation and air pressure of a given space. Within certain types of pharmaceutical manufacturing processes, precise environmental control can help limit inefficiencies and potential problems.

Pharmaceutical tablet coating is one such application. Inefficiencies during the coating process may result in contamination and tablet impurity in the form of tablet-to-tablet colour variation, surface pitting from over-wetting, twinning due to spray drying, cracking or peeling. Most of these problems can be overcome by better control of the environment within the process. Over-wetting, for example, occurs when the coating hits the still wet tablet surface and the surrounding air does not dry it quickly enough. Another example involves spray drying, when the coating hits the tablet surface after the moisture has been removed resulting in poor adhesion of the coating.

In the case of incorrect cooling and drying of the sugar solution, a rough, translucent and uneven coating may be produced.

Since the required environment for a perfect coating strongly depends on the composition of the tablets, many pharmaceutical manufacturers have scientists who perform experiments to determine the ideal coating procedure including temperature and humidity levels. Once these specific requirements are determined, the set-points can be configured at the controller to enable the precision tablet-coating machines to work at optimal performance.

spoonfull of medicines
A spoonful of perfectly coated tablets!

Tablet Coating Benefits-Summary

  • covers the unpleasant taste, odour and colour
  • provides physical and chemical protection for the medicine (light, moisture and air)
  • controls the release of a drug (enteric coating)
  • improves the appearance of tablets
  • easier to swallow the tablets
  • assists and facilitate the identification of a drug
Dr. Jeremy Wingate
Rotronic UK

A relative humidity sensor for any application?

As we continue to measure relative humidity in more and more environments with ever increasing accuracy demands, we are pushing the humble capacitive humidity sensor into new realms.

Accuracy, drift, operating range and chemical resistance are key challenges for the relative humidity sensor industry. Our sensor experts work hard to develop new polymers and construction methods to ensure the best performance. At the same time advanced electronics and probe housings enable digital calibration and complex temperature corrections to further increase accuracy and performance. A final and often neglected part of ensuring a relative humidity probes performance is its filter. The correct filter ensures fast response and environmental protection. Filters also offer mechanical protection and eliminate damage caused by extreme airflow.

However understanding why sensors fail is often difficult to predict or understand. In many cases the chemicals and contaminants that sensors are exposed to are unknown. In these situations often selecting the best sensor can only be achieved through mutual relationships built around quality support and service.

In the UK we have worked closely with many customers and in combination with our Swiss technical divisions to select and develop solutions for some highly aggressive and challenging environments. Some of these projects are examined below in more detail.

Hydrogen peroxide vapour sterilisation.

– Hydrogen peroxide vapour is used to chemically sterilise environments and products by generating a vapour of toxic Hydrogen Peroxide. When the humidity reaches the dew point of the surfaces condensation forms sterilising all surfaces. However the chemicals are also highly aggressive to humidity sensors and constant cycles of saturation worsen the effects.

– Making use of Rotronic’s specifically designed H2O2 resistant sensor as well as additional conformal coating to protect exposed connections in further combination with improved customer understanding around handling and storage, has resulted in a solution that has exceeded customer expectations. Importantly, whilst this was not achieved first time around, through a partnership driven towards the end goal we achieved success.

Chemical damage Chemical degradation on the sensor surface
Commercial composting.

– Accelerated commercial composting is an impressive sight to see. The chemical and biological processes occurring are complex and surprisingly aggressive. The wrong materials can literally become part of the final compost if you are not careful. Chemically resistant sensors help to provide some longevity to instruments but one of the key areas requiring extra attention is around cable and filter design. Modifying a standard industrial grade sensor with bio-resilient cables ensures the probes are not eaten alive!

Highly accelerated life testing.

– As a supplier to many chamber manufacturers and companies providing testing services this is a common application. Chambers are cycled between high and low temperatures and humidities to simulate many years aging over a short period of time. The same effects are happening to the humidity sensor – critical for the control or validation of the chamber conditions. Using industrial sensors with electronics isolated away from chamber space reduces the effects of the sudden changes. But also care taken placing the sensor away from humidity outlets and well into the chamber to avoid stem conduction all help to avoid the sensor becoming saturated as temperature cycle – which is one of the main causes for corrosion and drift. Finally, careful filter maintenance is always important.

Swimming pool monitoring and control.

– Our featured image shows chemical formation on a non-Rotronic sensors connections. Rotronic uses inert metals in the sensor design to reduce the re-activity of the sensor to chemicals in the environments. Swimming pools have a mix of high humidity, chemicals and high temperatures which work together to corrode unprotected electronics. Sensor location is key to avoid direct exposure to spray and neat chemicals. Suitable filters and if required chemical resistant sensors have proven highly successful where other instruments have failed.

So you can see not all applications are easy and we have not even begun to explore the basic issues of accurate measurement and control present with every humidity sensor installation. However our belief and aim is that through communication and partnerships we can provide the right product to ensure the desired mix of performance, resilience and price for our customers – it’s not easy but it makes life interesting!

Dr. Jeremy Wingate

Rotronic UK