Category Archives: Process

Rotronic training course schedule 2016

We are pleased to announce our latest training course schedule for 2016. Courses include in partnership with Dave Ayres from Benrhos Ltd our practical 3 day temperature, humidity and dew point calibration and measurement uncertainty courses. In addition, for those seeking greater depth we are running dedicated courses on measurement uncertainty and ISO 17025 run by Lawrie Cronin and Dave Ayres

Temperature Humidity and Dew Point – Measurement, Calibration and Uncertainty

8th – 10th March :: 12th – 14th July :: 15th – 17th November
– Three day course at Rotronic UK offices and UKAS laboratory
– Practical applied knowledge and best practice
– Max 8 attendees to ensuring tailored content

Measurement Uncertainty for Laboratories and Plant

6th – 7th September
– Two day course at Rotronic UK offices
– Detailed knowledge for laboratory owners or process managers

Setting up and working with ISO17025

8th September
– One day course at Rotronic UK offices
– Ideal for ISO17025 lab managers or those looking to apply

For further information please do not hesitate to contact us.

 

Energy Efficiency and Indoor Air Quality

Some of the key factors for improving energy efficiency in relation to indoor applications are the control of Relative Humidity (RH) and temperature. The question is, how to control RH to acceptable levels in an energy efficient manner. Energy efficient humidity control has a very strong bearing on thermal comfort, Indoor Air Quality (IAQ) and eventually on the health and performance of occupants in air-conditioned buildings.

slider-pane1-new

Passivhaus buildings are built to a voluntary standard to improve energy efficiency and reduce ecological footprint.

IAQ control seeks to reduce Volatile Organic Compounds (VOCs), and other air impurities such as microbial contaminants. As such it is important to control relative humidity which can be a key factor leading to mould growth and the presence of bacteria and viruses, dust mites and other such organisms.

Buildings rely on a properly designed ventilation system to provide an adequate supply of cleaner air from outdoors or filtered and recirculated air

TrueDry_DR120_HR

Buildings may rely on dehumidifiers like the one above to reduce RH levels to a comfortable range

Air-conditioning systems typically employ a high level of air recirculation to save energy during cooling and dehumidification. Typically recirculation rates are around 80-90%, but can sometimes be even higher. The challenge is not so much in dehumidification, but in doing so without having to overcool. As such, ventilation is integrated for general comfort and economical saving.

Rooms are often designed with specific conditions in mind including temperature, humidity, brightness, noise, and air flow. Careful engineering and implementation of building automation and control is the only way to ensure energy efficiency and building operation conditions are met during occupancy, at the lowest possible costs.

IAQ Facts:

Energy Efficiency (EE) refers to either the reduction of energy inputs for a given service or the enhancement of a service for a given amount of energy inputs.

Relative humidity is highly temperature dependent, so if the temperature is stable, it is much easier to achieve a stable RH.

Air in our atmosphere is a mixture of gases with very large distances between molecules. Therefore, air can accommodate a large quantity of water vapor. The warmer the air, the more water vapor can be accommodated.

Why the need to measure, temperature and relative humidity?

Precise temperature control of air which is supplied to a room results in maximum comfort for the occupants. The temperature should be held constantly at a particular set point to achieve this comfort.

Readings from temperature transmitters installed in the air supply duct are compared to readings inside a particular room. It is easiest to achieve a constant room temperature if there is little difference between the two values. Air temperature control in supply ducts can be employed in rooms in which the air handling unit is used mainly for the renewal of air.

hf3_2_o_display_1

Rotronic manufactures temperature and humidity transmitters such as the one above which are suitable for use in spaces where appearance is a factor.

It is with good RH control that we can process the air for air conditioned rooms independent of the state of outside air and the processes taking place in the room. This way the RH remains constant or within the preset limits and thus energy consumption for humidification and dehumidification is minimized.

Air conditioning is supposed to maintain room temperature and RH as precisely as possible through the use of systems which monitor and control temperature and humidity in the room (or in the air supply ducts to the room). Systems must be dynamic to manage the changing room air quality depending on the occupants and usage.

With precise measurement and control of temperature and humidity, energy consumption for humidification & dehumidification as well as heating and cooling can be reduced leading to energy efficient building operation with lower energy costs and healthier occupants.

Phil Robinson
Rotronic UK

What is Dew Point Temperature

Our state side colleagues have put together a great FAQ technical note explaining dew point temperature in more detail!

chilled mirror / dew point mirror
chilled mirror / dew point mirror

The FAQ technical note can be accessed here and answers the following key questions!

  1. What is dew point temperature?
  2. What is frost  point?
  3. When should I choose dew point as the parameter I measure?
  4. What are the pros and cons of measuring dew point versus relative humidity?
  5. Does dew point change as the ambient temperature changes?
  6. How does pressure affect dew point measurement?
  7. What are the common technologies for measuring dew point?
  8. Isn’t dew point temperature the same thing as wet bulb temperature?
  9. How do I know which technology is best for my application?
  10. Where can I buy a dew point instrument?

Rotronic produce precision low dew point sensors for low moisture applications in addition Rotronic UK is the UK distributor for world class MBW chilled mirrors, please contact us for additional information!

Dr Jeremy Wingate
Rotronic UK

Temperature, Humidity and Ceramic drying

Introduction

Ceramic drying is one of the most important processes in ceramic production technology. Quality defects of ceramic products are caused by improper drying. The drying affects the quality of the finished product, the throughput but also the overall energy consumption for ceramic manufacturing enterprises. According to various statistics, generally energy consumption during drying processes represents 15% of total industrial fuel consumption. However within the ceramic industry, the energy consumption used for drying accounts for a much higher percentage of the total fuel consumption. Therefore energy saving within the drying process is extremely important for all enterprises. Drying speed, reducing energy use , ensuring high quality products and reducing  pollution are all  basic requirements for any ceramic manufacturer today.

Measurement and Control in Ceramic Dying

Ceramic production is done through several main processes: casting, drying, glazing, firing…

The casting and drying are important processes for ceramic. A forming workshop is equipped with an intelligent control system. The control system regulates the relative humidity value using information provided via room and process sensors. Sensors have to measure accurately ad repeat ably despite the challenging and often dusty conditions. Humidification and dehumidification processes require substantial energy so tighter control is a huge energy saver for these industries.

A constant temperature is also achieved via the intelligent control system. With a stable temperature and stable relative humidity within the workshop, manufacturers ensure the quality of  the ceramic body drying.

After stripping the body from the cast, the body contains a very high relative humidity level. During the drying process, the body may crack or deform due to the speed in which the product is dried (volume and shrinkage) which ruins the product and decreases the throughput.

Exactly this part of the process has become a major bottleneck within the production process of ceramic products.

In a casting workshop, stable environments can reduce the cracking and deformation effectively. It also improves the throughput rate of semi-finished products and shortens the drying period, also prolonging the life frame of the  plaster cast.

So constant temperature and  relative humidity according to the set values will help all factories to improve the throughput, reach an optimal drying speed and deliver the best quality results available.

How can we help?

Rotronic provides a range of instruments for environmental monitoring and control.

Rotronic HC2-IC industrial temperature and humidity probes, are successfully working in these tough applications, the probes are installed on the roofs of drying chambers and resist chemical pollution. With a flexible  HF5  transmitter, the outputs can be set to the customers requirements.

With both digital and a range of analogue outputs available as well as several probe mounting options, products can be selected for all applications.

Measurement data can be viewed on HF5 with display or remotely via HW4 software. Ease of calibration and sensor replacement ensures down time is kept to an absolute minimum.

Dr Jeremy Wingate
Rotronic UK

 

Energy Efficiency and Reliability in Modern Data Centres

Introduction

Data centres are rapidly becoming the power houses of the modern world. Combined with the rise of digital industries, virtually all business operations now rely in some way on the transfer of data. As data transfer rates increase in tandem with an explosion in mobile communication the demands on data centre infra-structure are ever increasing.

It is estimated that by 2018 global data traffic will exceed 8500 exabytes (32% compound annual growth rate).

Data centres provide the infra-structure to support the transfer and hosting of data. They are often classified into 4 tiers. Tier 4 provides highest levels of redundancy, security and efficiency. For example, a Tier 4 data centre is required to have an uptime of 99.995% equivalent to less than 27 minutes downtime per year! Tier 4 sites have fully redundant systems, power supplies and biometric security. Zero downtime is the ideal as the costs incurred via end user penalties can be huge.

data centre tiers

Why the need to measure temperature, humidity and differential pressure?

Data centres must be maintained to specific environmental conditions to ensure the performance and longevity of the hardware installed. As standard, temperature must be 18-27 °C, dew point 5-15 °C dp and humidity no higher than 60 %rh. This ensures the hardware is at a suitable temperature, condensation is avoided and the chance of static build up is reduced (caused by low humidity).

A control range of ±9 °C may seem relatively broad, however 100% of the energy supplied to server hardware is converted to heat. In most data centres if the cooling system fails and servers are not shut down, heat levels will rise above a critical 35 °C within minutes or even seconds. If unchecked, temperature levels will rise causing hardware damage and can result in electrical fires.

Achieving the specified control range requires precision sensors and advanced control systems. Typically modern data centres are designed using computational fluid dynamics to ensure the very highest efficiency. Despite this it is estimated around 5% of US electrical energy used is for data centre cooling.

pue power usage effectiveness

Since 100% of electricity utilised by servers is converted to heat, theoretically a 100% efficient cooling system would require an equal amount of energy. Efficiency is measured by comparing total facility energy use, with IT equipment energy use. This is called Power Usage Effectiveness (PUE). Theoretically PUE can be 1 but typically reported values are above 2. By utilising precision measurements and design, modern data centres achieve PUEs of ~1.1!

An improvement of 0.5 in a data centre’s PUE  equates to a energy saving of ~£2.2 M & ~12,000 tonnes CO2 over 5 years (for a site with 1 MW load).

 

What solutions can Rotronic offer?

Rotronic provides a range of instruments for environmental monitoring and control. Reliable and precise outside air sensors and weather shields enable natural cooling to be utilised where possible.

Inside the data centres, Rotronic interchangeable HC2-S probes can provide a combination of precise, fast response temperature and humidity measurements with ease of calibration. Our latest PF4 differential pressure transmitters provide precision low drift measurements.

With both digital and a range of analogue outputs available as well as several probe mounting options, products can be selected for all applications.

Importantly though we aim to understand your needs and build a relationship with the goal of providing an appropriate solution, combining instruments, training, calibration and ongoing support.

Dr Jeremy WIngate
Rotronic UK

 

Sugar Production and Relative Humidity

The sugar market worldwide

Sugar is one of the most important raw materials traded on the worldwide markets.

Top 5 sugar producing companies

1. Suedzucker AG,

2. Cosan SA Industria & Comercio

3. British Sugar PLC

4. Tereos Internacional SA

5. Mitr Phol Sugar Corp.

In the 18th century only a few countries were producing sugar. However, these days over 100 nations process different base materials into sucrose. Remarkably India, China, Brazil & the European Union alone deliver 50% of the global demand.

Sugar Facts:

– Worldwide 170 million tons of raw sugar were produced in 2011/2012

– Brazil, India, China & EU are the most important sugar producing nations

– With an annual consumption of more than 24 million tons India, is the world’s largest market for raw sugar

Raw materials & processing

In temperate regions such as West, Central & Eastern Europe, the United States, China and Japan raw sugar is produced from sugar beet. However in the tropics and subtropics sugar is extracted from sugar cane.

800px-cut_sugarcane

Sugar cane & Sugar Beet

Processing

The processing of these two raw materials only differs in the first few steps. The main goal is to extract the juice, containing the sugar,  as efficiently as possible.

Extracting the sugar

Sugar cane is cut into small pieces during the harvest. It is then put through an industrial press to squeeze out the sweet sap.
Sugar beet has to be processed in extraction towers, where the plants release their sugar during a hot water treatment at 70°C.

Evaporation

After filtering the juice the water is extracted by passing through different stages of evaporators until only a thick syrup is left consisting of around 70% sugar.

Crystallisation

The syrup is then boiled until sugar crystals are formed. These crystals are then cleaned through centrifugation. To further improve purity this process is repeated twice.

Cooling & drying

Now the sugar has to be dried. One option is in large scale drum dryers at a temperature of 60°C. after drying, the sugar is cooled down on fluidized-bed coolers before heading to the warehouse or packed for shipping.

Trommel2_400_219_01

Inside a drum dryer.

Storage & logistics

Sugar belongs to the group of hygroscopic goods with an extremely low water content – below 1.5%. Basically sugar is a robust material but vulnerable to high humidity and temperature changes.
Generally it is recommended to store and transport sugar at a temperature of 20-25°C and 25-60% relative humidity.

By taking a closer look at the adsorption curve of sugar it is easy to see that over a long range of relative humidity the product quality is not affected. But as soon as the humidity level rises to 75% sugar starts to clump and above 80% relative humidity even dissolves .

Storage

Immediately after production the refined sugar is stored in humidity controlled sugar terminals or ventilated silos connected to dehumidifiers.

6.2.4. Sugar Terminal 5086

Sugar in a storage terminal

Logistics

Large quantities are trans-ported in silo trucks or train wagons. When sent by ship sugar is packed in double-walled bags made of natural fibre and plastic. If sealed like this, temperature is the crucial parameter which can affect the quality of the sugar. Due to big differences in temperature water vapour left inside the bags may cause clumping and even liquefaction.
The finer the sugar, the higher the risk of clumping.

Caking-dark-brown-sugar

Sugar clumping

Why the need to measure humidity?

As seen above, temperature and humidity measurements are crucial parameters in the sugar industry. Due to its hygroscopic behavior sugar can resist small changes in humidity, and slight temperature variations are not a major problem. But as soon as relative humidity rises above 80% or temperature changes significantly, the product can be destroyed as it clumps or even turns liquid.
During the process of evaporation, crystallisation, drying and cooling temperature and humidity play a huge role.

Philip Robinson                                                                                                        Rotronic UK

 

Humidity measurement in Paint Spray Booths

Paint booths in general

Spray painting has existed since the late 1800’s. The technique was developed in a bid to accelerate painting times compared to brush painting. Spray painting is a method of painting where paint is atomised onto a surface via a spray gun. The paint is mixed together with a solvent or water (called a carrier) so that it can be applied correctly.

Cars, aircraft, boats and other such equipment is often spray painted in a spray paint booth.

A spray booth is an enclosed room, designed for spray painting. Depending on the requirements, the booth may be equipped with filtered air to avoid getting dust in the room and an exhaust air system to clear the fumes of any evaporating solvents used during the spray painting process.

Regulations, such as the Occupational Safety & Health Administration from the United States department of Labor have a criteria for design and construction of spray booths state that a spray booth is: a power-ventilated structure provided to enclose or accommodate a spraying operation to confine and limit the escape of spray, vapour and residue, and to safely conduct or direct them to an exhaust system.

Spray paint booths regulate relative humidity, temperature, airflow and pressure to ensure a quality coating and a perfect curing.

Certain paints contain flammable solvents which release flammable fumes: in this case explosion-proof components are required for all measuring equipment that come in contact with the fumes.

Paint dry and cure times
Paint dry and cure times

Why do we need to monitor and measure in Paint Spray Booths

In order for paint to dry correctly within the paint booths, the relative humidity and temperature levels should be within the following conditions:

 – 65 to 75%rh
 – 20 to 24°C

Based upon the intake air, there may be a requirement to either dry or humidify the air in order to reach the desired values. From the temperature side, exactly the same thing: the air might need to be cooled or heated depending on the outside temperature.

Additionally, paint booths might have a  separate monitoring system inside the booths in which the different elements are painted. In order to ensure that the paint is  applied correctly to the element to be painted, it is important to ensure that the surface temperature of the element is not too close to the dew point level in the booth.

If the surface temperature of the element to be painted is close to the dew point temperature, then there will be risks of condensation forming on the surface of the element. If this were to happen, the coating will not be optimal and the drying and curing phase will not be completed properly and the results could be catastrophic.

 

Rotronic have recently launched a totally new range ATEX (Intrinsically Safe and Explosion Proof) instruments. Paint spray booths typically require ATEX certified instruments.

More details here.

Rotronic ATEX range
Rotronic ATEX range