Ceramic drying

Temperature, Humidity and Ceramic drying

Introduction

Ceramic drying is one of the most important processes in ceramic production technology. Quality defects of ceramic products are caused by improper drying. The drying affects the quality of the finished product, the throughput but also the overall energy consumption for ceramic manufacturing enterprises. According to various statistics, generally energy consumption during drying processes represents 15% of total industrial fuel consumption. However within the ceramic industry, the energy consumption used for drying accounts for a much higher percentage of the total fuel consumption. Therefore energy saving within the drying process is extremely important for all enterprises. Drying speed, reducing energy use , ensuring high quality products and reducing  pollution are all  basic requirements for any ceramic manufacturer today.

Measurement and Control in Ceramic Dying

Ceramic production is done through several main processes: casting, drying, glazing, firing…

The casting and drying are important processes for ceramic. A forming workshop is equipped with an intelligent control system. The control system regulates the relative humidity value using information provided via room and process sensors. Sensors have to measure accurately ad repeat ably despite the challenging and often dusty conditions. Humidification and dehumidification processes require substantial energy so tighter control is a huge energy saver for these industries.

A constant temperature is also achieved via the intelligent control system. With a stable temperature and stable relative humidity within the workshop, manufacturers ensure the quality of  the ceramic body drying.

After stripping the body from the cast, the body contains a very high relative humidity level. During the drying process, the body may crack or deform due to the speed in which the product is dried (volume and shrinkage) which ruins the product and decreases the throughput.

Exactly this part of the process has become a major bottleneck within the production process of ceramic products.

In a casting workshop, stable environments can reduce the cracking and deformation effectively. It also improves the throughput rate of semi-finished products and shortens the drying period, also prolonging the life frame of the  plaster cast.

So constant temperature and  relative humidity according to the set values will help all factories to improve the throughput, reach an optimal drying speed and deliver the best quality results available.

How can we help?

Rotronic provides a range of instruments for environmental monitoring and control.

Rotronic HC2-IC industrial temperature and humidity probes, are successfully working in these tough applications, the probes are installed on the roofs of drying chambers and resist chemical pollution. With a flexible  HF5  transmitter, the outputs can be set to the customers requirements.

With both digital and a range of analogue outputs available as well as several probe mounting options, products can be selected for all applications.

Measurement data can be viewed on HF5 with display or remotely via HW4 software. Ease of calibration and sensor replacement ensures down time is kept to an absolute minimum.

Dr Jeremy Wingate
Rotronic UK

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s