Chicken Hatcheries.

As it is nearly Easter, I thought it would be a good idea post something related to eggs, unfortunately not the chocolate kind…

Chicken hatcheries in general

It takes about 21 days to hatch a chicken and during that time, it is crucial that the surroundings are controlled for it to be successful. Egg hatching farms transform the chickens into “broilers” or egg laying hens. Meat from egg hatching farms is the most consumed worldwide.

Facts & figures:

Approximately 49 billion chickens are consumed worldwide every year. That is 134 million every day.

Chicken is the most common type of poultry in the world.

100g of baked chicken breast contains 4 grams of fat and 31 grams of protein.

Sustainability of chicken meat increases by 20%, when using CO2 for modified atmosphere processing.

maxresdefault

Why the need to measure CO2?

Less staff required to run the breeding stations thanks to all hatching happening at around the same time. This means it is easier to plan shipments and know how many birds can be transported at a time. This results in less capital and reduced transport costs.

A smaller number of birds die during transportation, which results in more profit per shipment and less feed losses.

More efficient and cheaper feeding options, both through feed reduction and reduction in time.

Chickens_eating

Faster and easier to slaughter the animals using CO2, and there is no unnecessary suffering to the birds.

download

Packing using CO2, means food will last longer in supermarkets and for customers once purchased. This means a reduction in food waste from expired food.

How does it work?

The fertilized eggs are placed in a chamber, in which CO2 levels are controlled, depending on what stage of development the eggs are in. Living eggs contribute to the levels of CO2 (not 100% of all eggs are alive), which means that you have to monitor the CO2 continuously.

It has been shown that during embryonic development, the supply of CO2 has positive effects on the health of the organism after birth. Control of CO2 in chickens in development has also led to a more controlled hatching time.

3519914477_0b8db35d7f

Once CO2 levels insid an egg reach a certain level, the fully developed chickens start to hatch. When the chick has hatched, oxygen will be supplied. Once the eggs are hatched, they are sent off in trucks where the birds continue to develop during the transportation. To ensure the good health of the chicks during their transportation, the CO2 levels in the truck are controlled for the whole journey.

It has been found that a bird’s metabolism works slower at high concentrations of CO2. Controlling CO2 levels therefore means it can take less time and less food to raise broilers or egg laying hens. This means production will be cheaper for the companies, it´s also more sustainable to use less feed per pound of chicken.

The chickens are slaughtered after being knocked out with high levels of CO2, which only take a few seconds. This method is more humane than killing by electrical stunning.

Philip Robinson                                                                                                       Rotronic UK

Energy Efficiency and Reliability in Modern Data Centres

Introduction

Data centres are rapidly becoming the power houses of the modern world. Combined with the rise of digital industries, virtually all business operations now rely in some way on the transfer of data. As data transfer rates increase in tandem with an explosion in mobile communication the demands on data centre infra-structure are ever increasing.

It is estimated that by 2018 global data traffic will exceed 8500 exabytes (32% compound annual growth rate).

Data centres provide the infra-structure to support the transfer and hosting of data. They are often classified into 4 tiers. Tier 4 provides highest levels of redundancy, security and efficiency. For example, a Tier 4 data centre is required to have an uptime of 99.995% equivalent to less than 27 minutes downtime per year! Tier 4 sites have fully redundant systems, power supplies and biometric security. Zero downtime is the ideal as the costs incurred via end user penalties can be huge.

data centre tiers

Why the need to measure temperature, humidity and differential pressure?

Data centres must be maintained to specific environmental conditions to ensure the performance and longevity of the hardware installed. As standard, temperature must be 18-27 °C, dew point 5-15 °C dp and humidity no higher than 60 %rh. This ensures the hardware is at a suitable temperature, condensation is avoided and the chance of static build up is reduced (caused by low humidity).

A control range of ±9 °C may seem relatively broad, however 100% of the energy supplied to server hardware is converted to heat. In most data centres if the cooling system fails and servers are not shut down, heat levels will rise above a critical 35 °C within minutes or even seconds. If unchecked, temperature levels will rise causing hardware damage and can result in electrical fires.

Achieving the specified control range requires precision sensors and advanced control systems. Typically modern data centres are designed using computational fluid dynamics to ensure the very highest efficiency. Despite this it is estimated around 5% of US electrical energy used is for data centre cooling.

pue power usage effectiveness

Since 100% of electricity utilised by servers is converted to heat, theoretically a 100% efficient cooling system would require an equal amount of energy. Efficiency is measured by comparing total facility energy use, with IT equipment energy use. This is called Power Usage Effectiveness (PUE). Theoretically PUE can be 1 but typically reported values are above 2. By utilising precision measurements and design, modern data centres achieve PUEs of ~1.1!

An improvement of 0.5 in a data centre’s PUE  equates to a energy saving of ~£2.2 M & ~12,000 tonnes CO2 over 5 years (for a site with 1 MW load).

 

What solutions can Rotronic offer?

Rotronic provides a range of instruments for environmental monitoring and control. Reliable and precise outside air sensors and weather shields enable natural cooling to be utilised where possible.

Inside the data centres, Rotronic interchangeable HC2-S probes can provide a combination of precise, fast response temperature and humidity measurements with ease of calibration. Our latest PF4 differential pressure transmitters provide precision low drift measurements.

With both digital and a range of analogue outputs available as well as several probe mounting options, products can be selected for all applications.

Importantly though we aim to understand your needs and build a relationship with the goal of providing an appropriate solution, combining instruments, training, calibration and ongoing support.

Dr Jeremy WIngate
Rotronic UK

 

Friday Video! Rotronic HygroGen2 Portable Humidity and Temperature Generator and Calibrator

Take five minutes to check out a detailed video exploring our UK designed, developed and produced HygroGen2 Humidity and Temperature calibration chamber!

Dont Forget the Latest HygroGen2 Updates

– Control range extendable to -5…60degC and 2…99%rh

– Autocal suite enables automated calibration and adjustment of Rotronic devices with automated certificate generation

– Autocal+ enables the use of MBW chilled mirror references

– Remote enables access to your HygroGen2 from any web enabled device and remote support

Timber Drying

We recently visited a company which is involved in the drying of wood, and learned a bit about wood drying. This company had bought a temperature and humidity logger for monitoring their drying environment.

Timber Drying in General

Wood is probably one of the oldest building materials on the planet. But before wood can be used as a construction material, whether it for structural support in a building or to manufacture furniture, it has to undergo treatment to gain the required properties defined by the application in which the wood is used. The first and most important treatment is the drying process.

MINOLTA DIGITAL CAMERAA timber frame for a barn.

The fastest and most effective way to drying timber is in a Kiln. Kiln drying is done in a closed chamber in which air temperature, relative humidity and airflow can be controlled to dry timber to a specified moisture content. The temperature for the drying is usually between 40-90°C depending on type, size and the intended use of the timber. There are many different types of kilns such as vacuum systems, traditional heat and vent type kilns and radio frequency dryers. The cost of installing and maintaining a kiln may often be prohibitive unless a large amount of timber can be processed. However, if the value of specific species is high enough, it becomes more feasible to kiln dry green timber.

Drying_process2Wood in a drying kiln.

Some other drying options timber include: Solar drying where the green timber gets put into a glass house. This option is more often used for drying small amounts of timber. For bigger amounts the Air drying option tends to be used more often. Both drying options are only controllable to a very limited extend since they strongly depend on weather conditions.

Facts & figures:

One cubic metre of freshly felled oak contains approximately 540 litres of water.

Examples for air drying times:

Softwoods: 25mm thick Scots pine that is stacked in April can reach 20 % moisture content by July to August if the summer months are warm and dry.

Hardwoods: 25mm thick English oak if piled in early autumn can reach 20 % moisture content in about 10 months.

A 75mm thick log of wood can even take 3 years to reach equilibrium moisture content.

Why the need to measure humidity?

Controlling humidity during the timber drying process is essential for many factors. An incorrect level of % Equilibrium Relative humidity (ERH) in wood can have the following effects on product and process:

OLYMPUS DIGITAL CAMERAWhen damp, wood is easily damaged.

Dimensional changes

A controlled drying process prevents the timber from unacceptable shrinkage after the installation. But since wood is a natural hygroscopic product it will always change its size to a minor extend.

Strength

Drying the timber below a water contents of 25 % to 30 % will maximise the mechanical strength. dry wood is nearly twice as strong and twice as stiff as green wood.

stess_moisture_plotAs moisture content of wood decreases, the strength increases.

Decay

After drying, timber maintaining less than 20 % moisture content is unlikely to be attacked by wood decaying fungus.

Preservation

To increase the effectiveness of preservative treatments. Many preservatives should only be applied when the humidity of the timber has been reduced.

Corrosion

Drying timber prevents the corrosion of metal fixings such as  nails and screws.

rusty-fixingsWhen wood is wet, it may corrode metal fittings.

Weight

Dry wood is much lighter in weight than wet wood. For many species, dry wood is nearly half the weight of wet wood.

Philip Robinson                                                                                                           Rotronic Uk

Humidity and Seed Storage

I recently visited a facility where they were doing a lot of research into plant biology. As such, it was important for them to have their seeds stored at exactly the correct temperature and humidity to prevent germination or degradation of the seeds.

Seed storage in general

Around 10000 years ago when the first human beings stopped hunting and gathering wild plants, and started to cultivate on farms, preserving and storing seeds became important.

There are various reasons to store seeds, for example, simply preserving grain for consumption later in the year or for sowing during the following season. A little more complex is the collection and preservation of seeds for a longer period of time. This may be done to protect species from extinction or to ensure genetic variety for future generations. Long term storage is also necessary as a back up in case of catastrophic events, such as natural disasters, and disease outbreaks. This type of long term storage is usually done in well protected storage building called seed banks.

Seed-Diversity-in-the-Mil-007A range of seeds in storage

Inside each seed is a living plant embryo which, even in a state of dormancy, breathes through the exchange of gases across its membrane, and is constantly undergoing metabolic processes, also known as aging. The natural lifespan of a seed is influenced by several factors including: permeability of the seed coat, dormancy, and seed physiology. But one of the most important factors is the external environment the seed is exposed to. Temperature and humidity play a key role in the storage capabilities of seeds.

Facts & figures:

The oldest seed that has grown into a viable plant was a Judean date palm seed about 2,000 years old.

The Millennium Seed Bank Project in the UK is the biggest seed bank in the world. Currently they store 31880 species and 1`907`136`030 seeds.

China, with 197 million metric tons, is the world`s biggest producer of rice.

 

Why the need to measure humidity?

Controlling the environment in seed storage is essential for maintaining the germination capacity of seeds, or simply the quality of the seed as a food.

iregi_siteSunflower seeds

In General

Every 1% decrease in the moister content will double the storage life. The same applies for every 5°C decrease of the storage temperature.

A rule of thumb: the sum of the temperature in degrees F and the % relative humidity should be less then 100 for good seed storage conditions.

Storage conditions

Proper storage conditions maintain relative humidity levels
between 20% and 40%, giving corresponding seed moisture contents between 5% – 8%, depending on the type of seed. This range is safe for most seeds. When seed moisture content drops too low (<5%), storage life and seed vigor may decline. When seed moisture content goes above 8%, aging or seed deterioration can increase. Deterioration effects the integrity of the cell membrane, along with several biochemical processes, which overall results in loss of vigor and viability. Seed moisture contents above 12% will promote growth of fungi and insects. Most seeds cannot germinate until seed moisture contents go above 25%.

seedgrowthA newly germinated seed

Seed preparation for long term storage (Seed bank)

To prepare for long term storage, seeds are first put in to a drying room where temperature and humidity is carefully kept at 15°C and 15% relative humidity. Under these conditions the seeds gradually dry out. They are then cleaned, counted and put into airtight containers, before being placed in a seed bank at -20°C. The seeds are then tested for viability on a regular basis.

Philip Robinson                                                                                                                        Rotronic UK